Phylogenetic differences in calcium permeability of the auditory hair cell cholinergic nicotinic receptor.

نویسندگان

  • Marcela Lipovsek
  • Gi Jung Im
  • Lucía F Franchini
  • Francisco Pisciottano
  • Eleonora Katz
  • Paul Albert Fuchs
  • Ana Belén Elgoyhen
چکیده

The α9 and α10 cholinergic nicotinic receptor subunits assemble to form the receptor that mediates efferent inhibition of hair cell function within the auditory sensory organ, a mechanism thought to modulate the dynamic range of hearing. In contrast to all nicotinic receptors, which serve excitatory neurotransmission, the activation of α9α10 produces hyperpolarization of hair cells. An evolutionary analysis has shown that the α10 subunit exhibits signatures of positive selection only along the mammalian lineage, strongly suggesting the acquisition of a unique function. To establish whether mammalian α9α10 receptors have acquired distinct functional properties as a consequence of this evolutionary pressure, we compared the properties of rat and chicken recombinant and native α9α10 receptors. Our main finding in the present work is that, in contrast to the high (pCa(2+)/pMonovalents ∼10) Ca(2+) permeability reported for rat α9α10 receptors, recombinant and native chicken α9α10 receptors have a much lower permeability (∼2) to this cation, comparable to that of neuronal α4β2 receptors. Moreover, we show that, in contrast to α10, α7 as well as α4 and β2 nicotinic subunits are under purifying selection in vertebrates, consistent with the conserved Ca(2+) permeability reported across species. These results have important consequences for the activation of signaling cascades that lead to hyperpolarization of hair cells after α9α10 gating at the cholinergic-hair cell synapse. In addition, they suggest that high Ca(2+) permeability of the α9α10 cholinergic nicotinic receptor might have evolved together with other features that have given the mammalian ear an expanded high-frequency sensitivity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of Nicotinic Acetylcholine Receptor on Efferent Inhibition in Cochlear Hair Cell

The α9α10 nicotinic acetylcholine receptors (nAChRs) mediates efferent inhibition of hair cell function within the auditory sensory organ. Gating of the nAChRs leads to activation of calcium-dependent potassium channels to hyperpolarize the hair cell. In efferent system, main calcium providers to SK channel are nAChR and synaptic cistern, which contribution to efferent inhibition is different b...

متن کامل

Tracking the Molecular Evolution of Calcium Permeability in a Nicotinic Acetylcholine Receptor

Nicotinic acetylcholine receptors are a family of ligand-gated nonselective cationic channels that participate in fundamental physiological processes at both the central and the peripheral nervous system. The extent of calcium entry through ligand-gated ion channels defines their distinct functions. The α9α10 nicotinic cholinergic receptor, expressed in cochlear hair cells, is a peculiar member...

متن کامل

Pharmacology of acetylcholine-mediated cell signaling in the lateral line organ following efferent stimulation.

Cholinergic efferent fibers modify hair cell responses to mechanical stimulation. It is hypothesized that calcium entering the hair cell through a nicotinic receptor activates a small-conductance (SK), calcium-activated potassium channel to hyperpolarize the hair cell. The calcium signal may be amplified by calcium-induced calcium release from the synaptic cisternae. Pharmacological tests of th...

متن کامل

Cholinergic synaptic inhibition of inner hair cells in the neonatal mammalian cochlea.

Efferent feedback onto sensory organs provides a means to modulate input to the central nervous system. In the developing mammalian cochlea, inner hair cells are transiently innervated by efferent fibers, even before sensory function begins. Here, we show that neonatal inner hair cells are inhibited by cholinergic synaptic input before the onset of hearing. The synaptic currents, as well as the...

متن کامل

Short-term plasticity and modulation of synaptic transmission at mammalian inhibitory cholinergic olivocochlear synapses

The organ of Corti, the mammalian sensory epithelium of the inner ear, has two types of mechanoreceptor cells, inner hair cells (IHCs) and outer hair cells (OHCs). In this sensory epithelium, vibrations produced by sound waves are transformed into electrical signals. When depolarized by incoming sounds, IHCs release glutamate and activate auditory nerve fibers innervating them and OHCs, by virt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 109 11  شماره 

صفحات  -

تاریخ انتشار 2012